博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Analysis by Its History_exercise 1.5
阅读量:5957 次
发布时间:2019-06-19

本文共 2070 字,大约阅读时间需要 6 分钟。

Problem proposed by Armenia/Australia for the 35th international mathematical olympiad (held in Hong Kong, July 12–19, 1994). $ABC$ is an isosceles triangle with $AB = AC$. Suppose that (i) $M$ is the midpoint of $BC$ and $O$ is  the point on the line $AM$ such that $OB$ is perpendicular to $AB$; (ii) $Q$ is an arbitrary point on the segment $BC$ different from $B$ and $C$; and (iii) $E$ lies on the line $AB$ and $F$ lies on the line $AC$ such that $E, Q,$ and $F$ are distinct and collinear. Prove, with Vi`te’s method, that $OQ$ is perpendicular to $EF$ if and only if $QE = QF$ .

 

Proof:Let $M=(0,0),Q=(r,0),B=(-a,0),C=(a,0),A=(0,b),O=(0,k)$.Then

\begin{equation}\label{eq:28.15.36}(a,k)\cdot (a,b)=0\end{equation}

Let the equation of the line EF be $y=t(x-r)$.The intersection point of the line EQ and AB is

$$E=(\frac{ab+tra}{at-b},\frac{tb(r+a)}{at-b})$$

Similary,the intersection point of the line EF and AC is

$$F=(\frac{tra+ab}{at+b},\frac{tb(a-r)}{at+b})$$

\begin{align*}

EQ^2=f(a)&=(\frac{tra+ab}{at-b}-r)^2+\frac{t^2b^2(r+a)^2}{(at-b)^2}\\&=(\frac{ab+br}{at-b})^2+\frac{t^2b^2(r+a)^2}{(at-b)^2}\\&=\frac{a^2b^2+b^2r^2+2ab^2r+t^2b^2r^2+t^2b^2a^2+2t^2b^2ar}{a^2t^2+b^2-2abt}
\end{align*}

\begin{equation}FQ^2=f(-a)\end{equation}

It is easy to verify that

\begin{align*}
\frac{a^2b^2+b^2r^2+2ab^2r+t^2b^2r^2+t^2b^2a^2+2t^2b^2ar}{a^2t^2+b^2-2abt}=\frac{a^2b^2+b^2r^2-2ab^2r+t^2b^2r^2+t^2b^2a^2-2t^2b^2ar}{a^2t^2+b^2+2abt}
\end{align*}

if and only if

\begin{equation}\label{eq:28.23.31}
t(a^2b+br^2+t^2br^2+t^2ba^2)+(r+t^2r)(a^2t^2+b^2)=0
\end{equation}

\ref{eq:28.23.31} holds if and only if \begin{equation}\label{eq:28.23.32}br^2t+ba^2t+a^2t^2r+b^2r=0\end{equation}

\ref{eq:28.23.32} holds if and only if \begin{equation}\label{eq:28.23.36}(b+rt)(a^2t+br)=0\end{equation}It is easy to verify that $b+rt\neq 0$,so \ref{eq:28.23.36} holds if and only if \begin{equation}a^2t+br=0\end{equation}

$OQ$ is perpendicular to $EF$ if and only if $tk=r$.Because $a^2+kb=0$,and $tk=r$,so $a^2t+rb=0$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/10/28/3827874.html

你可能感兴趣的文章
实战 Windows Server 2012 群集共享卷
查看>>
CSS 元素超出部分滚动, 并隐藏滚动条
查看>>
React中那些纠结你的地方(一)
查看>>
Docker入门安装教程
查看>>
PhoneGap极光推送 cordova消息推送
查看>>
Subarray Sum Equals K
查看>>
preventDefault, stopPropagation, stopImmediatePropagation 三者的区别
查看>>
超级账本HyperLedger初体验
查看>>
完美解决html中select的option不能隐藏的问题。
查看>>
推荐5大开源工具,用于开发Kubernetes项目
查看>>
制定2015年的移动开发策略
查看>>
JPA 2.2改进了易用性
查看>>
从蚂蚁金服实践入手,带你深入了解 Service Mesh
查看>>
24周年,“常青树”Delphi发布新版本10.3.1
查看>>
7. 从数据库获取数据- 从零开始学Laravel
查看>>
阿里百川码力APP监控 来了!
查看>>
使用dotenv管理环境变量
查看>>
温故js系列(11)-BOM
查看>>
Vuex学习
查看>>
bootstrap - navbar
查看>>